
Review: BoundsChecker 4.0
Reviewed by Dave Jewell

BoundsChecker is now a well
established tool, from NuMega

Technologies, makers of the re-
nowned SoftIce/W system-level
debugger (a new version of which
has recently been released for
Windows NT). Although it’s been
around for a while, BoundsChecker
will be relatively unknown to the
Delphi programming community
because, up until now, it has been
specific to C/C++ application devel-
opment. BoundsChecker 4.0
changes all that and is now fully
compatible with Delphi 2.0. This
review looks at a late beta (Release
Candidate) of the Windows 95
version. A separate version is
available for use under NT.

So What Exactly Is It?
NuMega refer to BoundsChecker as
an automated error detection and
analysis tool. You can think of it as
an error detector which lurks in the
background while your application
is running. As soon as something
goes wrong, BoundsChecker
makes a note of the error and op-
tionally gives an indication of the
problem. At the end of the debug-
ging session, you can review all the
errors and make any required
changes to your source files.

This is quite a different philoso-
phy to normal debugging practice.
As a rule, programmers only
bother to debug a program when
they know that there’s something
wrong with it! Conventional debug-
ging involves narrowing down an
already-known problem to a spe-
cific line of source code and deter-
mining exactly what’s going wrong
so that the source can be fixed.

BoundsChecker really comes af-
ter this point in the development
cycle. When you think you’ve got
all the bugs out of your program,
that’s the time to use Bounds-
Checker! It will often show you that
there are still problems with your
code. These problems can be quite
obvious, or they can be very sub-
tle. For instance, suppose that each

time your program runs it con-
sumes a few more bytes of
precious system resources. From
your perspective, the program
runs flawlessly, but after being exe-
cuted a few hundred times on a
server, Windows will eventually
die a horrible death.

This is just the sort of problem
that BoundsChecker is particularly
good at finding. Indeed, when
BoundsChecker was first released,
many C/C++ programmers be-
lieved that it wasn’t working prop-
erly because it was reporting many
problems with the OWL and MFC
class libraries. It turned out that
those problems were real: the most
popular C++ class libraries had
both resource and memory leaks!
The real problem, of course, was
that neither Borland nor Microsoft
had had the benefit of Bounds-
Checker during their development
– but you have no such excuse!

Installation And Usage
The Release Candidate I had for
review ships on five diskettes and
occupies around 12.5Mb of disk
space. Installation is very straight-
forward and you can then immedi-
ately fire up Delphi 2.0 to find that
three new options have been
added to the Tools menu: Bounds-
Checker, BoundsChecker Settings
and BoundsChecker Help.

To check a program, you simply
invoke the BoundsChecker menu op-
tion and your program will start
running automatically. Under nor-
mal circumstances, you will be
checking for problems in your own
code rather than in the Delphi run-
time library or VCL classes. How-
ever, it is possible to rebuild the
these libraries so that Bounds-
Checker has access to source-code
information even within the RTL
and VCL. Be warned, though, that
if you want to do this, you’ll need a
copy of Borland’s 32-bit assembler,
TASM32.

Every time BoundsChecker en-
counters a problem in the running
program a dialog similar to Figure
1 is displayed and execution is sus-
pended until you’ve dealt with the
dialog. If you wish, you can tell
BoundsChecker not to display this
dialog, but simply to record all er-
rors for later examination. Pressing
the Acknowledge button simply re-
starts execution of the program. If
you encounter a large number of
errors of the same type, you can
use the Suppress button to tell
BoundsChecker how you want to
deal with future occurrences of the
same error. The options here are:
➣ Suppress the error if it occurs in

the same function,
➣ Suppress the error if it occurs in

the same source file,

➤ Figure 1
Each time an error
occurs in your
running program,
this dialog box
appears. You can
suppress this
behaviour and elect
to view all errors
after the program
has executed, or
you can suppress
certain categories
of error only.

July 1996 The Delphi Magazine 37

➣ Suppress the error if it occurs in
the same executable,

➣ Suppress the error no matter
what.

This prevents you being inundated
with repeated error notifications
when your program is sat in some
enormous loop! Using the Bounds-
Checker menu item, you can get ac-
cess to another set-up dialog which
will allow you to modify your list of
suppressed errors. This intro-
duces the concept of suppression
libraries, where you can select rou-
tines in the Visual C++ runtime li-
brary, OWL, MFC, Delphi run-time
and even the Visual Basic 4.0 run-
time interpreter. Another nice
touch is the inclusion of a Note
button which can be used to insert
a note relating to the error that’s
just occurred. This will show up
later when you examine the post-
mortem log.

Once you’ve finished running
your application, there are several
different logs that you can open up,
each of which appears as an MDI
window within the main Bounds-
Checker application. The simplest
of these is the list of Notifications
window. At various points within
the Windows kernel, low-level noti-
fication messages are generated
when certain things happen. I’m
not using the word ‘message’ in the
normal Windows sense here. To
hook these notifications, you have
to call routines in TOOLHELP.DLL
and this is presumably what
BoundsChecker is doing. These
messages are generated when a
DLL is loaded or unloaded, when a
new thread is created or destroyed
and when processes start and
terminate. Exceptions and calls to
OutputDebugString (a low-level
Windows API) are also included.

Unfortunately, BoundsChecker
is a bit more invasive than it ought
to be here: the notification file in-
cludes not only the DLLs, OCXs, etc
used by your program, but also the
modules loaded by Bounds-
Checker itself. This is a little con-
fusing but you soon realise which
are the BoundsChecker DLLs. This
behaviour isn’t mentioned in the
documentation and it’s possible
that it only occurs when debugging
Delphi applications.

The next window is the Event
window (Figure 2). Events have a
fairly loose definition and include
calls to and returns from API rou-
tines, processing dialog and win-
dow messages and processing
Windows hooks. BoundsChecker
distinguishes between ordinary
API events and OLE interface
method calls, the latter having a
separate icon. When you examine
the various events that have taken
place, you can see the parameters
that were used to call a particular
API routine and you can see the
function result that was returned
from the call. This is a big improve-
ment on laboriously stepping
through a program in a debugger to
find what went wrong. As you se-
lect different events in the log,
BoundsChecker will automatically
bring into view and highlight the
corresponding source code line.
You can hide detail by showing dif-
ferent levels of event and you can
use a Noise Reduction option to
hide the operation of the normal
message processing loop within a
typical Windows application.

Error Detection
The Error window (Figure 3) gives
a list of all the suspect things which
BoundsChecker found. As an exam-
ple, I discovered a small utility I’d
written wasn’t properly freeing up
system resources. It’s dead easy to
spot this because BoundsChecker
places a little tear drop symbol (a
leak, get it?) next to every such

problem in the Error window. Simi-
larly, you get told when you pass
invalid arguments to API routines
or when an API call returns a
function result indicating failure.

Of course, BoundsChecker can’t
always tell whether a failed API call
is intentional. For instance, a pro-
gram might try to open a file to
check if it exists. A failed file open
will be flagged as an error. You can
get round this by altering the ex-
tensive array of filtering options
BoundsChecker provides to ignore
errors with certain function calls.

BoundsChecker isn’t foolproof
and will sometimes report prob-
lems that aren’t there. As a real-
world example, I’ve written a little
program which (amongst other
things) adds sub-menus to an exist-
ing menu structure. The program
works by calling the CreateMenu API
to create a new, empty sub-menu,
adding items to the sub-menu and
then using InsertMenu to attach the
sub-menu to the existing parent
menu. BoundsChecker notices the
call to CreateMenu and apparently
looks for a corresponding Destroy-
Menu call with the same menu han-
dle value. It doesn’t see it because
I make just one call to DestroyMenu
using the parent menu handle to
automatically de-allocate all the
attached sub-menus, something
that BoundsChecker isn’t aware of.

However, none of the above is
intended as serious criticism. In
fact, the Error window is the best
part of BoundsChecker. Here’s a

➤ Figure 2 The Event window

38 The Delphi Magazine Issue 11

brief run-down of the vast number
of different error types that the
program is intended to catch:
➣ API Routine Checks Validates

errors in over 3000 API func-
tions including the complete
Win32 API, DirectX, the new
Internet APIs and the C/Delphi
run-time libraries. For each API
call, BoundsChecker tests for
the correct number of argu-
ments, bad or invalid
arguments, invalid pointers,
conflicting flags and more.

➣ Pointer Checking Detects im-
proper use of null pointers, op-
erations on uninitialised
pointers, attempting to free
global memory handles without
performing a GlobalUnlock call
and calling routines through a
function pointer that hasn’t
been set up to point to valid
code.

➣ Leak Checking There are two
sorts of leaks you need to worry
about: memory leaks and re-
source leaks. In addition to de-
tecting memory leaks caused by
Windows API routines, Bounds-
Checker will also find memory
leaks resulting from improper
use of the Delphi RTL library
routines. Resource leaks result
from a failure to de-allocate bit-
maps, device contexts, menus
or the various GDI-based
drawing tools.

➣ OLECheck BoundsChecker
has the ability to keep track of
OLE-based interface method
calls. Invalid return code and
bad parameters are checked for
and BoundsChecker also tracks
of the number of times an inter-
face is instantiated and re-
leased, generating an error if
each interface doesn’t have a
corresponding Release call.

➣ Memory Access Validates
memory access, checking that
memory reads do not access
uninitialised memory and
checking that memory writes
do not (for example) exceed the
bounds of an array or dynami-
cally allocated memory block.

In addition, BoundsChecker will
also perform ‘compliance’ testing
on a program. This is a excellent
way of determining if your applica-

tion will work under Windows 95
and NT. The built-in compliance
monitor will auto-detect the use of
API routines specific to either envi-
ronment and this will be flagged in
the generated compliance report.

Custom Checks & Validation
In earlier BoundsChecker versions
the underlying API validation code
was fixed. With the new version,
NuMega have introduced the con-
cept of validation modules, making
it possible to design custom valida-
tors for your own DLLs. Unfortu-
nately, it presumes you have a C++
compiler: NuMega provide utilities
which generate a C++ source file,
which you then compile and link to
create a validation module.

In the same way, Bounds-
Checker’s on-line help information
is C/C++ oriented. It is, however, of
outstanding quality. A great deal of
context-sensitive information is
provided so that when you’re look-
ing at the Error log (for example),
you can select an error item and
press F1 key to get information re-
lating to the specific error that
you’ve highlighted. Not only that,
but the on-line help also provides
sample code illustrating the error
and guidance on how to fix it.

Conclusions
It’s undeniable that Bounds-
Checker was originally developed
for C/C++ developers and this
emphasis continues to an extent.
There are actually two different

editions: Professional and Stand-
ard. However, as far as I can deter-
mine, the extra facilities of the
Professional Edition are only appli-
cable to C/C++ developers.

It’s equally undeniable that
BoundsChecker isn’t cheap! How-
ever, if you’re developing anything
but the most basic Delphi applica-
tion, it will more than pay for itself
in allowing you to quickly locate
program bugs and problems that
will happily pass undetected
through a conventional beta test-
ing cycle. The end result is more
robust software, fewer angry cus-
tomers and less support calls. I’d
go so far as to say that if you’re
developing commercial applica-
tions, you really shouldn’t let it out
the door until you’ve run it through
BoundsChecker first.

BoundsChecker 4.0 is available
in the UK from Programmer’s
Paradise on 0500 284 177 (Free
Phone). The Standard Edition
costs £395, the Professional costs
£715. Because of the low level at
which BoundsChecker hooks into
an application, you must also spec-
ify whether you want the Windows
95 or Windows NT version.

Dave Jewell is a freelance consult-
ant, programmer and technical
journalist specialising in system-
level Windows and DOS work.
Contact Dave as DaveJew-
ell@msn.com, DSJewell@aol.com
or 102354,1572 on CompuServe

➤ Figure 3 The Error Log

40 The Delphi Magazine Issue 11

	So What Exactly Is It?
	Installation And Usage
	Error Detection
	Custom Checks & Validation
	Conclusion

